Car-Following Trajectory Modeling with Machine Learning—A showcase

نویسنده

  • Montasir M. Abbas
چکیده

30 This paper attempts to showcase the benefits and merits of using artificial intelligence techniques 31 in transportation applications. The example we use in this paper is modeling of a car-following 32 trajectory data and comparing the machine learning approach to regression analysis. For the 33 machine learning approach, we use Neuro-Fuzzy Actor-Critic Reinforcement Learning 34 (NFACRL). We train the NFACRL network using vehicle trajectory data extracted from the 35 Naturalistic Car Driving Study (NCDS) databases provided by the Virginia Tech Transportation 36 Institute (VTTI). Our results show that both the machine learning and regression analysis could 37 predict the upcoming acceleration value with a very high R 2 value (more than 0.98). However, 38 only the machine learning approach could reproduce the vehicle trajectory, while the regression 39 analysis would ultimately lead to an erroneous model. 40

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Solution to the Problem of Extrapolation in Car Following Modeling Using an online fuzzy Neural Network

Car following process is time-varying in essence, due to the involvement of human actions. This paper develops an adaptive technique for car following modeling in a traffic flow. The proposed technique includes an online fuzzy neural network (OFNN) which is able to adapt its rule-consequent parameters to the time-varying processes. The proposed OFNN is first trained by an growing binary tree le...

متن کامل

Analyzing the performance of different machine learning methods in determining the transportation mode using trajectory data

With the widespread advent of the smart phones equipping with Global Positioning System (GPS), a huge volume of users’ trajectory data was generated. To facilitate urban management and present appropriate services to users, studying these data was raised as a widespread research filed and has been developing since then. In this research, the transportation mode of users’ trajectories was identi...

متن کامل

Modeling of Chloride Ion Separation by Nanofiltration Using Machine Learning Techniques

In this work, several machine learning techniques are presented for nanofiltration modeling. According to the results, specific errors are defined. The rejection due to Nanofiltration increases with pressure but decreases with increasing the concentration of chloride ion. Methods of machine learning represent the rejection of nanofiltration as a function of concentration, pH, pressure and also ...

متن کامل

A Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images

Nowadays, ground vehicle monitoring (GVM) is one of the areas of application in the intelligent traffic control system using image processing methods. In this context, the use of unmanned aerial vehicles based on thermal infrared (UAV-TIR) images is one of the optimal options for GVM due to the suitable spatial resolution, cost-effective and low volume of images. The methods that have been prop...

متن کامل

Using the Reaction Delay as the Driver Effects in the Development of Car-Following Models

Car-following models, as the most popular microscopic traffic flow modeling, is increasingly being used by transportation experts to evaluate new Intelligent Transportation System (ITS) applications. A number of factors including individual differences of age, gender, and risk-taking behavior, have been found to influence car-following behavior. This paper presents a novel idea to calculate ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012